Determining local conformational variations in DNA. Nuclear magnetic resonance structures of the DNA duplexes d(CGCCTAATCG) and d(CGTCACGCGC) generated using back-calculation of the nuclear Overhauser effect spectra, a distance geometry algorithm and constrained molecular dynamics.
نویسندگان
چکیده
Two-dimensional nuclear magnetic resonance (n.m.r.) spectroscopy and a variety of computational techniques have been used to generate three-dimensional structures of the two DNA duplexes d(CGCCTAATCG) and d(CGTCACGCGC). The central six base-pairs in these two decamers contain all ten dinucleotide pairs in DNA and thus, represent a model system for investigating how the local structure of DNA varies with base sequence. Resonance assignments were made for the non-exchangeable base protons and most of the C-1'-C-4' sugar protons in both decamers. Three-dimensional structures were generated using a distance geometry algorithm and these initial structures were refined by optimizing the fit of back-calculated spectra against the experimental two-dimensional nuclear Overhauser effect (NOE) spectra. This back-calculation procedure consists of calculating NOE cross relaxation rates for a given structure by solution of the Bloch equations, and directly accounts for spin diffusion effects. Use of this refinement procedure eliminates some assumptions that have been invoked when generating structures of DNA oligomers from n.m.r. data. Constrained energy minimization and constrained quenched molecular dynamics calculation were also performed on both decamers to help generate energetically favorable structures consistent with the experimental data. Analysis of the local conformational parameters of helical twist, helical rise, propeller twist, displacement and the alpha, beta, gamma, epison and zeta backbone torsion angles in these structures shows that these parameters span a large range of values relative to the X-ray data of nucleic acids. However, the glycosidic and pseudorotation angles are quite well defined in these structures. The implications that these results have for determination of local structural variations of DNA in solution, such as those predicted by Callidine's rules, are discussed. Our results differ significantly from some previous studies on determining local conformations of nucleic acids and comparisons with these studies are made.
منابع مشابه
Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation.
Molecular dynamics in torsion-angle space was applied to nuclear magnetic resonance structure calculation using nuclear Overhauser effect-derived distances and J-coupling-constant-derived dihedral angle restraints. Compared to two other commonly used algorithms, molecular dynamics in Cartesian space and metric-matrix geometry combined with Cartesian molecular dynamics, the method shows increase...
متن کاملThe Conformations of 1-Thiacyclooctan-3-One Dynamic Nuclear Magnetic Resonance and Force-Field Calculation
The 1H and natural-abundance 13C-NMR spectra of 1-thiacyclooctan-3-one (1) have been measured from 25 to -100°C. Coalescence is observed in the 1H-NMR spectra of (1) at about -80°C, and attributed to ring inversion in a boat-chair conformation, which is the predominant conformation of (1). The free energy of activation (DG¹</s...
متن کاملP Nmr and Two-dimensional Nmr Spectra of Nucleic Acids and 2d Noesy-constrained Molecular Mechanics Calculations for Structural Solution of Duplex Oligonucleotides*
Nuclear magnetic resonance spectroscopy is now able to provide detailed 3-dimensional structures and dynamics of oligonucleotide duplexes and nucleic acid complexes (1,2). Unfortunately, of the six torsional angles that largely define the backbone structure, only the four involving the deoxyribose ring have been shown to be directly amenable to analysis by NMR techniques. In fact for modest-siz...
متن کاملSolution Conformation of a Heptadecapeptide Comprising the DNA Binding Helix F of the Cyclic AMP Receptor Protein of Escherichia cd Combined use of ‘H Nuclear Magnetic Resonance and Restrained Molecular Dynamics
A nuclear magnetic resonance study on a heptadecamer (17-mer) peptide comprising the DNA binding helix F of the cyclic AMP receptor protein of Escherichia coli is presented under solution conditions (viz. 40% (v/v) trifluorethanol) where it adopts an ordered helical structure as judged by circular dichroism. Using a combination of two-dimensional nuclear magnetic resonance techniques, complete ...
متن کاملRefinement of the solution structure of the RNA-DNA hybrid 5'-[r(GCA)d(TGC)]2. Combined use of nuclear magnetic resonance and restrained molecular dynamics.
The solution conformation of the self-complementary RNA-DNA hybrid hexamer 5'-[r(GCA)d(TGC)]2 is investigated by NMR spectroscopy and restrained molecular dynamics. The 1H-NMR spectrum is assigned in a sequential manner using two-dimensional homonuclear Hartmann-Hahn and nuclear Overhauser enhancement spectroscopy. From the latter a set of 178 approximate interproton distance restraints are det...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of molecular biology
دوره 214 3 شماره
صفحات -
تاریخ انتشار 1990